Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
2.
Signal Transduct Target Ther ; 8(1): 167, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2305501

ABSTRACT

The highly contagious SARS-CoV-2 Omicron subvariants severely attenuated the effectiveness of currently licensed SARS-CoV-2 vaccines based on ancestral strains administered via intramuscular injection. In this study, we generated a recombinant, replication-incompetent human adenovirus type 5, Ad5-S-Omicron, that expresses Omicron BA.1 spike. Intranasal, but not intramuscular vaccination, elicited spike-specific respiratory mucosal IgA and residential T cell immune responses, in addition to systemic neutralizing antibodies and T cell immune responses against most Omicron subvariants. We tested intranasal Ad5-S-Omicron as a heterologous booster in mice that previously received intramuscular injection of inactivated ancestral vaccine. In addition to inducing serum broadly neutralizing antibodies, there was a significant induction of respiratory mucosal IgA and neutralizing activities against Omicron subvariants BA.1, BA.2, BA.5, BA.2.75, BF.7 as well as pre-Omicron strains Wildtype, Beta, and Delta. Serum and mucosal neutralizing activities against recently emerged XBB, BQ.1, and BQ.1.1 could also be detected but were much lower. Nasal lavage fluids from intranasal vaccination contained multimeric IgA that can bind to at least 10 spike proteins, including Omicron subvariants and pre-Omicron strains, and possessed broadly neutralizing activities. Intranasal vaccination using Ad5-S-Omicron or instillation of intranasal vaccinee's nasal lavage fluids in mouse nostrils protected mice against Omicron challenge. Taken together, intranasal Ad5-S-Omicron booster on the basis of ancestral vaccines can establish effective mucosal and systemic immunity against Omicron subvariants and multiple SARS-CoV-2 variants. This candidate vaccine warrants further development as a safe, effective, and user-friendly infection and transmission-blocking vaccine.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , SARS-CoV-2 , COVID-19 Vaccines/genetics , COVID-19/prevention & control , Immunoglobulin A
3.
Emerg Microbes Infect ; : 1-51, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2268776

ABSTRACT

Prolonged infection and possible evolution of SARS-CoV-2 in patients living with uncontrolled HIV-1 infection highlight the importance of an effective vaccination regimen, yet the immunogenicity of COVID-19 vaccines and predictive immune biomarkers have not been well investigated. Herein, we report that the magnitude and persistence of antibody and cell-mediated immunity (CMI) elicited by an Ad5-vectored COVID-19 vaccine are impaired in SIV-infected macaques with high viral loads (> 105 genome copies per ml plasma, SIVhi) but not in macaques with low viral loads (< 105, SIVlow). After a second vaccination, the immune responses are robustly enhanced in all uninfected and SIVlow macaques. These responses also show a moderate increase in 70% SIVhi macaques but decline sharply soon after. Further analysis reveals that decreased antibody and CMI responses are associated with reduced circulating follicular helper T cell (TFH) counts and aberrant CD4/CD8 ratios, respectively, indicating that dysregulation of CD4+ T cells by SIV infection impairs the COVID-19 vaccine-induced immunity. Ad5-vectored COVID-19 vaccine shows no impact on SIV loads or SIV-specific CMI responses. Our study underscores the necessity of frequent booster vaccinations in HIV-infected patients and provides indicative biomarkers for predicting vaccination effectiveness in these patients.

4.
Front Immunol ; 13: 1042784, 2022.
Article in English | MEDLINE | ID: covidwho-2237497

ABSTRACT

Background: A third mRNA vaccine booster is recommended to improve immunity against SARS-CoV-2 in kidney transplant recipients (KTRs). However, the immunity against SARS-CoV-2 Ancestral strain and Delta and Omicron variants elicited by the third dose of inactivated booster vaccine in KTRs remains unknown. Methods: The blood parameters related to blood cells count, hepatic function, kidney function, heart injury and immunity were explored clinically from laboratory examinations. SARS-CoV-2 specific antibody IgG titer was detected using an enzyme-linked immunosorbent assay. Cellular immunity was analyzed using interferon-γ enzyme-linked immunospot assay. Results: The results showed that there were no severe adverse effects and apparent changes of clinical laboratory biomarkers in KTRs and healthy volunteers (HVs) after homologous inactivated vaccine booster. A third dose of inactivated vaccine booster significantly increased anti-Ancestral-spike-trimer-IgG and anti-Ancestral-receptor binding domain (RBD)-IgG titers in KTRs and HVs compared with the second vaccination. However, the anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG titers were significantly lower than anti-Ancestral-RBD-IgG titer in KTRs and HVs after the third dose. Notably, only 25.6% (10/39) and 10.3% (4/39) of KTRs had seropositivity for anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG after booster, which were significantly lower than HVs (anti-Delta-RBD-IgG: 100%, anti-Omicron-RBD-IgG: 77.8%). Ancestral strain nucleocapsid protein and spike specific T cell frequency after booster was not significantly increased in KTRs compared with the second dose, significantly lower than that in HVs. Moreover, 33.3% (12/36), 14.3% (3/21) and 14.3% (3/21) of KTRs were positive for the Ancestral strain and Delta and Omicron spike-specific T cells, which were significantly lower than HVs (Ancestral: 80.8%, Delta: 53.8%, and Omicron: 57.7%). Conclusions: A third dose of inactivated booster vaccine may significantly increase humoral immunity against the Ancestral strain in KTRs, while humoral and cellular immunity against the Delta and Omicron variants were still poor in KTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Humans , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , Enzyme-Linked Immunospot Assay , Immunoglobulin G , SARS-CoV-2 , Immunization, Secondary , COVID-19 Vaccines/immunology
5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2208113

ABSTRACT

Background A third mRNA vaccine booster is recommended to improve immunity against SARS-CoV-2 in kidney transplant recipients (KTRs). However, the immunity against SARS-CoV-2 Ancestral strain and Delta and Omicron variants elicited by the third dose of inactivated booster vaccine in KTRs remains unknown. Methods The blood parameters related to blood cells count, hepatic function, kidney function, heart injury and immunity were explored clinically from laboratory examinations. SARS-CoV-2 specific antibody IgG titer was detected using an enzyme-linked immunosorbent assay. Cellular immunity was analyzed using interferon-γ enzyme-linked immunospot assay. Results The results showed that there were no severe adverse effects and apparent changes of clinical laboratory biomarkers in KTRs and healthy volunteers (HVs) after homologous inactivated vaccine booster. A third dose of inactivated vaccine booster significantly increased anti-Ancestral-spike-trimer-IgG and anti-Ancestral-receptor binding domain (RBD)-IgG titers in KTRs and HVs compared with the second vaccination. However, the anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG titers were significantly lower than anti-Ancestral-RBD-IgG titer in KTRs and HVs after the third dose. Notably, only 25.6% (10/39) and 10.3% (4/39) of KTRs had seropositivity for anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG after booster, which were significantly lower than HVs (anti-Delta-RBD-IgG: 100%, anti-Omicron-RBD-IgG: 77.8%). Ancestral strain nucleocapsid protein and spike specific T cell frequency after booster was not significantly increased in KTRs compared with the second dose, significantly lower than that in HVs. Moreover, 33.3% (12/36), 14.3% (3/21) and 14.3% (3/21) of KTRs were positive for the Ancestral strain and Delta and Omicron spike-specific T cells, which were significantly lower than HVs (Ancestral: 80.8%, Delta: 53.8%, and Omicron: 57.7%). Conclusions A third dose of inactivated booster vaccine may significantly increase humoral immunity against the Ancestral strain in KTRs, while humoral and cellular immunity against the Delta and Omicron variants were still poor in KTRs.

6.
Virol Sin ; 38(2): 233-243, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165946

ABSTRACT

Homologous booster, heterologous booster, and Omicron variants breakthrough infection (OBI) could improve the humoral immunity against Omicron variants. Questions concerning about memory B cells (MBCs) and T cells immunity against Omicron variants, features of long-term immunity, after booster and OBI, needs to be explored. Here, comparative analysis demonstrate antibody and T cell immunity against ancestral strain, Delta and Omicron variants in Omicron breakthrough infected patients (OBIPs) are comparable to that in Ad5-nCoV boosted healthy volunteers (HVs), higher than that in inactivated vaccine (InV) boosted HVs. However, memory B cells (MBCs) immunity against Omicron variants was highest in OBIPs, followed by Ad5-nCoV boosted and InV boosted HVs. OBIPs and Ad5-nCoV boosted HVs have higher classical MBCs and activated MBCs, and lower naïve MBCs and atypical MBCs relative to both vaccine boosted HVs. Collectively, these data indicate Omicron breakthrough infection elicit higher MBCs and T cells against SARS-CoV-2 especially Omicron variants relative to homologous InV booster and heterologous Ad5-nCoV booster.


Subject(s)
Breakthrough Infections , COVID-19 , Humans , SARS-CoV-2 , Antibodies , Antibodies, Viral , Antibodies, Neutralizing
7.
China CDC Wkly ; 4(28): 622-625, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1955614

ABSTRACT

What is already known about this topic?: China was certified malaria-free on June 30, 2021. However, imported malaria continuously threatens the effort to prevent re-establishment of malaria in China. What is added by this report?: Measures such as international travel restrictions, entry quarantine, and screening in fever clinics during the coronavirus disease 2019 (COVID-19) period were associated with a significant decrease of imported malaria cases in Anhui Province, a higher proportion of non-Plasmodium falciparum (non-P. falciparum) malaria reported infections, and a higher proportion of cases requiring medical attention at their initial visit. What are the implications for public health practices?: It is necessary to be vigilant about imported malaria during the COVID-19 epidemic, especially for non-P. falciparum infections which are more difficult to detect, and to promote research, development, and introduction of more sensitive and specific point-of-care detection methods for non-P. falciparum species.

SELECTION OF CITATIONS
SEARCH DETAIL